Chronic vasodilation produces plasma volume expansion and hemodilution in rats: consequences of decreased effective arterial blood volume.
نویسندگان
چکیده
Plasma volume (PV) expansion is required for optimal pregnancy outcomes; however, the mechanisms responsible for sodium and water retention in pregnancy remain undefined. This study was designed to test the "arterial underfill hypothesis" of pregnancy which proposes that an enlarged vascular compartment (due to systemic vasodilation and shunting of blood to the placenta) results in renal sodium and water retention and PV expansion. We produced chronic vasodilation by 14 days administration of nifedipine (NIF; 10 mg·kg(-1)·day(-1)) or sodium nitrite (NaNO2; 70 mg·kg(-1)·day(-1)) to normal, nonpregnant female Sprague-Dawley rats. Mean arterial pressure, monitored by telemetry, was reduced by both NIF and NaNO2 but was unchanged in control rats. At day 14, vasodilator treatment lowered hematocrit and increased PV (determined by Evans blue dye dilution). Plasma osmolarity (Posm), sodium (PNa), and total protein concentrations all fell. These responses resemble the responses to normal pregnancy with hemodilution, marked PV expansion, and decreased Posm and PNa. Our previous work indicates a role of increased inner medullary phosphodiesterase-5 (PDE5) in the sodium retention of pregnancy. Here, we found that inner medullary PDE5A mRNA and protein expression were increased by both NIF and NaNO2 treatment vs. control; however, neither renal cortical nor aortic PDE5 expression was changed by vasodilator treatment. We suggest that a primary, persistent vasodilation drives increased inner medullary PDE5 expression which facilitates continual renal Na retention causing "refilling" of the vasculature and volume expansion.
منابع مشابه
Hemodilution mediates hemodynamic changes during acute expansion in unanesthetized rats.
Studies were carried out to determine the relative importance of volume and hemodilution on hemodynamic adjustments to acute volume expansion. Systemic and renal hemodynamics were monitored in unanesthetized and unrestrained rats during progressive and equivalent blood volume expansion with saline (Sal; 1, 2, and 4% body wt), 7% BSA solution (0.35, 0.7, and 1.4% body wt), and reconstituted whol...
متن کاملEffect of hemodilution on the distribution of renal blood flow.
We evaluated the effects of hemodilution, expansion of intravascular volume, and expansion of interstitial volume on the distribution of cortical renal blood flow, utilizing the microsphere technique. Hemodilution without volume expansion (saline exchange) produced an increase in fractional blood flow in zone 1 (outermost zone) of the cortex from 34 plus or minus 1% to 43 plus or minus 2% and a...
متن کاملChronic vasodilation increases renal medullary PDE5A and α-ENaC through independent renin-angiotensin-aldosterone system pathways.
We have previously observed that many of the renal and hemodynamic adaptations seen in normal pregnancy can be induced in virgin female rats by chronic systemic vasodilation. Fourteen-day vasodilation with sodium nitrite or nifedipine (NIF) produced plasma volume expansion (PVE), hemodilution, and increased renal medullary phosphodiesterase 5A (PDE5A) protein. The present study examined the rol...
متن کاملSalt-induced hypertension in Dahl salt-sensitive rats. Hemodynamics and renal responses.
This study was performed with Dahl salt-sensitive (DS) and Dahl salt-resistant (DR) rats to detect differences in cardiovascular hemodynamics and renal responses that might be involved in initiating salt-induced hypertension in DS rats. The effects of 4 weeks of 8% NaCl diet were studied in conscious, male DR and DS rats in which vascular and urinary catheters had been previously implanted. Res...
متن کاملSaline volume expansion and cardiovascular physiology: novel observations, old explanations, and new questions
In a clinical investigation, Kumar and coworkers reported the hemodynamic events that accompany plasma volume expansion over 3 hours in healthy adult volunteers, and found that increases in stroke volume (SV) may be related to increases in left ventricular (LV)/right ventricular (RV) end-diastolic volume, as they expected, but also to decreases in LV/RV end-systolic volume. The latter finding s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 300 1 شماره
صفحات -
تاریخ انتشار 2011